Synthesis of 2-allyl-2,3-dihydro-1 H -indol-3-ones using in situ Claisen rearrangement of $\mathbf{2 , 3}$-dihydro- $\mathbf{1 H}$-indol-3-ones with allyl alcohols

Tomomi Kawasaki, Kouhei Masuda, Yasutaka Baba, Romi Terashima, Kana Takada and Masanori Sakamoto*
Meiji College of Pharmacy, 1-35-23 Nozawa, Setagaya-ku, Tokyo 154, Japan

Treatment of 2,3-dihydro-1 H -indol-3-ones with allyl alcohols in the presence of camphorsulfonic acid and magnesium sulfate at $130^{\circ} \mathrm{C}$ gave, via condensation and a Claisen rearrangement, 2-allyl-2,3-dihydro- 1 H -indol-3-ones in good yields. The stereochemistry of the products was determined by NOE experiments.

2,3-Dihydro- 1 H -indol-3-ones are useful synthetic intermediates for the synthesis of alkaloids and biologically active compounds. ${ }^{1}$ 2-(1,1-Dimethylallyl)indoles are particularly attractive intermediates for the synthesis of alkaloids such as austamide, ${ }^{2}$ brevianamides, ${ }^{3}$ neoechinuline ${ }^{4}$ and others. ${ }^{5}$ Recently, Williams and co-workers ${ }^{6}$ proposed that the 2-(1,1 ${ }^{\mathcal{J}}$ dimethylallyl)indol-3-one derivative is a possible biosynthetic intermediate of brevianamides. Although several methods for the synthesis of 2,3 -dihydro- 1 H -indol-3-ones have been reported, ${ }^{7}$ 2-allyl-2,3-dihydro-1 H -indol-3-ones are still difficult to obtain. In a recent communication, ${ }^{8}$ we showed that the tandem condensation-Claisen rearrangement of 2,3-dihydro1 H -indol-3-ones $1-8$ with 3 -methylbut-2-en-1-ol 9 a was a useful method for the synthesis of 2-(1,1-dimethylallyl)-2,3-dihydro$1 H$-indol-3-ones 10a-16a. We now report the in situ Claisen rearrangement of 2,3 -dihydro- 1 H -indol-3-ones $1-8$ with various allyl alcohols $\mathbf{9 b}$ - \mathbf{j} to give 2 -allylindol-3-ones $\mathbf{1 0 b}$ - \mathbf{j} $\mathbf{1 6 b}-\mathbf{j}$, the stereochemistries of the products and the reaction mechanism, including a full account of the work mentioned in our communication. ${ }^{8}$

Results and discussion

The 2,3-dihydro- $1 H$-indol- 3 -ones $\mathbf{1 - 8}$ were readily available by our synthetic method. ${ }^{9}$ Initially, we examined the reaction of 1 -acetyl-2,3-dihydro-1 H -indol-3-one 1 with 3-methylbut-2-en-1ol $9 \mathbf{a}$ (Scheme 1) and the results are summarized in Tables 1 and 2. Heating 1 with 3 -methylbut-2-en-1-ol 9 a in the presence of catalytic toluene- p-sulfonic acid and magnesium sulfate \dagger at $130^{\circ} \mathrm{C}$ in a sealed tube for 6 h gave 1 -acetyl-2-($1,1-$ dimethylallyl)-2,3-dihydro- 1 H -indol-3-one 10a in 37% yield together with the isomeric 3-methylbut-2-enyl derivative $\mathbf{1 0 b}{ }^{7 b}$ (18%) (Table 2, entry 1). A higher reaction temperature and use of a solvent resulted in a reduction in the proportion of the Claisen product 10a obtained (entries 2, 3 and 4). When the reaction was performed using camphorsulfonic acid (CSA) instead of toluene- p-sulfonic acid, the yield of (1,1 -di-methylallyl)indol-3-one 10a was improved (62%), although it was still accompanied by the formation of the isomer $\mathbf{1 0 b}$ (11%) (entry 5). Similarly, the CSA-promoted reaction of the indol-3ones 2-4 with 9a afforded the corresponding 11a-13a as the major product along with $\mathbf{1 1 b}-\mathbf{1 3 b}$ respectively (entries $6-8$). In the case of the 1 -methoxycarbonyl derivative 5 , the reaction required prolonged heating, but the desired product 14a was preferentially obtained in good yield (entry 9).

The difference between the ratio of products 10a and 10b in

[^0]Table 1 Treatment of indol-3-ones 1-7 with allyl alcohols 9a-j
$\left.\begin{array}{llll}\hline & & \begin{array}{l}\text { Allyl } \\ \text { alcohol }\end{array} & \begin{array}{l}\text { Reaction } \\ \text { time } / \mathrm{h}\end{array}\end{array} \begin{array}{l}\text { Products } \\ \text { (\%, ratio of } \\ \text { diastereoisomers) }\end{array}\right]$
${ }^{a}$ For details, see Table 2. ${ }^{b}$ Starting if was recovered in 9% yield. ${ }^{c}$ Starting 1 g was recovered in 27% yield. ${ }^{d}$ Starting 1 a was recovered in 28% yield.
the reaction using CSA (5.5:1; entry 5) and that using toluene-p-sulfonic acid (2:1; entry 1) indicates that these acids influence not only the initial condensation step but also the Claisen rearrangement step. The formation of $\mathbf{1 0 b}$ can be explained in terms of a $[1,3]$ shift of the intermediate, 3-(3-methylbut-2enyloxy)indole, rather than isomerization of $\mathbf{1 0 a}$ or direct alkylation with allylic cation generated from 9 a at the 2 position of 1, by the following facts. Prolonged heating of either 10a or 10b under the same reaction conditions, as shown in entry 5 , showed no isomerization, and similar treatment of 1 with 2-methylbut-3-en-2-ol 9a afforded a mixture of 10a and 10b in a different ratio ($1.2: 1,50 \%$ yield; Table 2 , entry 10) from that in entry $5(5.5: 1)$.

The reaction of 1 with nerol (cis-3,7-dimethylocta-2,6-dien-1ol) 9 c for 13 h under the same conditions provided the Claisen product 10 c in 50% yield as a mixture of its diastereoisomers in a ratio of $3: 1$. Treatment of 2-substituted 2-allylindol-3-ones 6 or 7 with 9 a , however, failed to give the desired product.

Next we investigated the reaction of 1 with various allyl alcohols d-j. When 1 was heated with allyl alcohol 9d in the presence of catalytic CSA and magnesium sulfate at $130^{\circ} \mathrm{C}$ in a sealed tube for 2 h , the desired in situ Claisen rearrangement proceeded smoothly to afford 2 -allylindol-3-one $10 d^{7 b}$ in 73% yield. The reaction of 2-substituted indol-3-ones 6 and 7 with 9 d

Scheme 1

Table 2 Reaction of indol-3-ones 1-5 with allyl alcohols 9a and 9b

Entry	Indol-3-one	Allyl alcohol	Reaction conditions			Products $(\text { yield, } \%)^{a}$	
			Acid	$T /{ }^{\circ} \mathrm{C}$	t / h		
1	1	9a	TsOH	130	6	10a (37)	10 b (18)
2	1	9a	TsOH	150	4	10a (33)	10 b (23)
3	1	9a	TsOH	180	3	10a (32)	10 b (26)
4	1	9a	TsOH	$110^{\text {b }}$	5.5	10a (24)	10 b (18)
5	1	9a	CSA	130	3	10a (62)	10b (11)
6	2	9a	CSA	130	7	11a (66)	11b (11)
7	3	9 a	CSA	130	6.5	12a (37)	12b (19)
8	4	9a	CSA	130	4	13a (59)	13b (13)
9	5	9a	CSA	130	10	14a (66)	--
10	1	9b	CSA	130	8	10a (27)	10b (23)

${ }^{a}$ Isolated yield. ${ }^{b}$ In refluxing toluene.

18 e

$18 e^{\prime}$

Fig. 1
required longer heating ($20-42 \mathrm{~h}$), but Claisen products $15 d$ and 16d were obtained in 63 and 61% yields, respectively. In the case of 2-benzylindol-3-one 8 , however, the reaction gave a complex mixture, in which the desired product was not found.
The similar reaction of 1 with but-2-en-1-ol 9 e (the mixture of E - and Z-isomers; 5.7:1) for 3 h gave a mixture of
diastereoisomers of 2-(1-methylallyl)indol-3-ones 10e and 10e' (1.7:1) in 73% yield. The stereochemistries of the products $\mathbf{1 0 e}$ and $10 e^{\prime}$ were determined by NOE experiments (Fig. 1), after their separation followed by their transformation to the lactones 18 e and $18 \mathrm{e}^{\prime}$, respectively (Scheme 2). Thus, the reduction of the indol-3-one $\mathbf{1 0 e}$ and 10e' with sodium borohydride proceeded stereoselectively to afford cis-alcohols 17e and 17e', the stereochemistries of which were confirmed by NOE experiments. The ozonolysis of 17 e and $17 \mathrm{e}^{\prime}$ followed by PCC oxidation gave lactones 18 e and $18 \mathrm{e}^{\prime}$ respectively. \ddagger The
\ddagger The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 8 e}$ and $\mathbf{1 8 e}$ show the existence of rotamers; for example, in the measurement of 18 e at room temperature, two broad signals due to the acetyl protons (in a $1: 2$ ratio) appear at $\delta 2.33$ and 2.49 , while at $80^{\circ} \mathrm{C}$ the protons are observed as a single sharp signal at $\delta 2.49$.

Fig. 2

C

D

Fig. 3
treatment of 1 with (E)-cinnamyl alcohol $9 f$ afforded a mixture of diastereoisomers (1.2:1) of the Claisen product $10 f$ in 55% yield.
The predominant product 10e is produced via the chair-like transition state \mathbf{A} (Fig. 2) derived from E-9e which is more favourable than the boat-like transition state $\mathbf{B}(\mathrm{R}=\mathrm{H}) .{ }^{10}$ However, the stereoselectivity of this reaction was unexpectedly low. This is caused by epimerization of the product $\mathbf{1 0 e}$ to $\mathbf{1 0} \mathbf{e}^{\prime}$. Thus, heating of $\mathbf{1 0 e}$ under the same conditions gave a mixture (8.8:1) of 10e and 10e', while $\mathbf{1 0} \mathrm{e}^{\prime}$ was not epimerized. The reaction of 2 -methylindol-3-one 6 with 9 e gave a mixture (2.2:1) of the diastereoisomers of the Claisen product 15e in 53% yield. In this case, the cause of the low stereoselectivity is not the epimerization of $\mathbf{1 5 e}$ but a smaller energy gap between the transition states \mathbf{A} and $\mathbf{B}(\mathrm{R}=\mathrm{Me})$.
The reaction of $\mathbf{1}$ with 2-methylallyl alcohol 9 g proceeded slowly to give the Claisen product $10 \mathrm{~g}(25 \%)$ with recovered 1 (28%).

As an example of a secondary rather than a primary allyl alcohol, the reaction of 1 with but-3-en- 2 -ol 9 h was carried out under the same conditions. The reaction proceeded stereoselectively to give (E)-2-(but-2-enyl)indol-3-one $\mathbf{1 0 h}$ in 56% yield along with [1,3]-product $10 \mathrm{e} / \mathbf{1 0 e}$ ($1.4: 1$) in 9% yield. The E stereoselectivity is rationalized as the result of the lesser congestion of chair-like transition state \mathbf{C} relative to the transition state \mathbf{D} having a pseudo-1,3-diaxial interaction (Fig. 3). ${ }^{10}$
Finally, we treated 1 with cyclic allyllic alcohols. Similar treatment of 1 with cyclohex-2-enol 9 i afforded a mixture (1:1) of diastereoisomers of the corresponding indol-3-one 10 i in 67% yield. In the case of 3 -methylcyclohex-2-enol $\mathbf{9 j}$, the reaction proceeded through the [1,3]-rearrangement instead of the Claisen rearrangement to give the indol-3-one 10j in $\mathbf{9 7 \%}$ yield as a mixture of its diastereoisomers with the ratio $1.6: 1$. The [1,3]-rearrangement occurs because the Claisen rearrangement is unfavourable due to steric interaction between the cyclohexenyl and indole rings in the transition state.

Experimental

All melting points were measured on a Yanagimoto micromelting point apparatus and are uncorrected. IR spectra were recorded with a Hitachi $270-30$ or a Snimadzu FTIR-8100 spectrophotometer. NMR spectra were determined on a JEOL JNM-GX 270 spectrometer with tetramethylsilane $\left(\mathrm{Me}_{4} \mathrm{Si}\right)$ as an internal standard. J Values are given in Hz . Mass spectra were obtained with a JEOL JMS-DX302 instrument with a direct inlet system operating at 70 eV . Elemental analyses were obtained using a Perkin-Elmer Model 240B elemental analyser.

Column chromatography was carried out on silica gel (Kanto Chemical Co. Inc., 100-200 mesh and Merck, 400 mesh). 2,3-Dihydro-1 H-indol-3-ones 1, ${ }^{11}$ 2-6 ${ }^{9}$ and $8^{6 b}$ were prepared according to reported procedures.

Preparation of 1-acetyl-2-phenyl-2,3-dihydro-1 \mathbf{H}-indol-3-one 7
Following our reported procedure, ${ }^{6 b} 7$ was obtained from 2-methoxy-2-phenyl-1-acetyl-2,3-dihydro-1 H -indol-3-one ${ }^{12}$ via reduction and demethoxylation. Sodium borohydride $(0.76 \mathrm{~g}$, 20 mmol) was added to a solution of the starting indol-3-one $(0.57 \mathrm{~g}, 2 \mathrm{mmol})$ in methanol $\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After 20 min , the reaction mixture was concentrated under reduced pressure, and extracted with ethyl acetate. The extract was washed with water, dried over magnesium sulfate, and evaporated under reduced pressure to give an alcohol (0.52 g); mp $172-173^{\circ} \mathrm{C}$ (from benzene). Stannyl chloride ($0.62 \mathrm{~g}, 2.4 \mathrm{mmol}$) was added to a solution of the alcohol $(0.52 \mathrm{~g}, 1.8 \mathrm{mmol})$ in methylene dichloride $\left(40 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After 30 min , the resultant mixture was washed with water, dried over magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with methylene dichloride-hexane ($1: 1$) to give the indol-3-one $7(0.28 \mathrm{~g}, 60 \%)$, $\mathrm{mp} 128-129^{\circ} \mathrm{C}$ (ethyl acetate-hexane) (Found: C, 76.2; H, 5.3; $\mathrm{N}, 5.6 . \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2}$ requires $\mathrm{C}, 76.45 ; \mathrm{H}, 5.2$; $\mathrm{N}, 5.55$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720$ and $1682 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.07(3 \mathrm{H}, \mathrm{s}), 5.02$ ($1 \mathrm{H}, \mathrm{s}$), 7.2-7.3 (4 H, m), 7.34-7.41 ($2 \mathrm{H}, \mathrm{m}$), 7.71-7.76 ($2 \mathrm{H}, \mathrm{m}$) and $8.69(1 \mathrm{H}, \mathrm{d}, J 7.6) ; m / z 251\left(\mathrm{M}^{+}, 80 \%\right), 209(56), 208(44)$, 180 (100), 152 (21), 104 (12) and 77 (17).

General procedure for the treatment of $1-8$ with $9 a-j$

A mixture of the 1,2 -dihydroindol-3-one $\mathbf{1 - 8}(1 \mathrm{mmol})$, allyl alcohol $9 \mathrm{a}-\mathbf{j}\left(5.9 \mathrm{~cm}^{3}\right)$, (\pm)-camphorsulfonic acid (CSA) or toluene-p-sulfonic acid (0.09 mmol), and magnesium sulfate $(0.44 \mathrm{~g})$ was heated in a sealed tube at $130^{\circ} \mathrm{C}$ with or without toluene ($17 \mathrm{~cm}^{3}$) with stirring for the period indicated in Tables 1 and 2 . After removal of the magnesium sulfate, the reaction mixture was concentrated under reduced pressure to give a residue, which was purified by column chromatography on silica gel with diethyl ether-hexane ($1: 1$ for 10c,f,h, 15d,e and $\mathbf{1 6 d} ; 2: 1$ for $\mathbf{1 0 a}, \mathbf{b}, \mathbf{d}, \mathbf{e}, \mathbf{e}^{\prime}, \mathbf{i}, \mathbf{j}, \mathbf{1 1 a , b}, \mathbf{1 2 a}, \mathbf{b}, \mathbf{1 3 a}, \mathbf{b}$ and $\mathbf{1 4 a} ; 3: 1$ for $\mathbf{1 0 g}$) as an eluent to give 2 -allylindol-3-ones $\mathbf{1 0 - 1 6}$. The yields are listed in Tables 1 and 2.
1-Acetyl-2-(1,1-dimethylallyl)-2,3-dihydro-1 H -indol-3-one 10a. A viscous oil (Found: $\mathrm{M}^{+}, 243.1261 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $M, 243.1259)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1721$ and $1678 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.96$ ($3 \mathrm{H}, \mathrm{s}$), $1.12(3 \mathrm{H}, \mathrm{s}), 2.33(3 \mathrm{H}, \mathrm{s}), 4.32(1 \mathrm{H}, \mathrm{br}$ s), $4.89(1 \mathrm{H}, \mathrm{d}$, $J 8.9$), $4.90(1 \mathrm{H}, \mathrm{d}, J 18.8), 5.75(1 \mathrm{H}$, ddd, $J 17.5,10.6$ and 1.6), $7.15(1 \mathrm{H}, \mathrm{t}, J 9.6), 7.53-7.60(2 \mathrm{H}, \mathrm{m})$ and $7.81(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; m / z$ $243\left(\mathrm{M}^{+}, 8 \%\right), 175(70), 133(100), 69(38)$ and 41 (20).
1-Acetyl-2-(1,1-dimethylallyl)-5-methoxy-2,3-dihydro-1 \mathbf{H} -indol-3-one 11a. A viscous oil (Found: $\mathrm{M}^{+}, 273.1362 . \mathrm{C}_{16^{-}}$ $\mathrm{H}_{19} \mathrm{NO}_{3}$ requires $M, 273.1365$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1716$ and 1670 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.97(3 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{s}), 2.30(3 \mathrm{H}, \mathrm{s}), 3.76(3$ $\mathrm{H}, \mathrm{s}), 4.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.90(1 \mathrm{H}, \mathrm{d}, J 10.6), 4.91(1 \mathrm{H}, \mathrm{d}, J 17.5)$, $5.75(1 \mathrm{H}, \mathrm{dd}, J 17.5$ and 10.6), $7.02(1 \mathrm{H}, \mathrm{d}, J 2.6), 7.14(1 \mathrm{H}$, dd, $J 8.9$ and 3.0) and $7.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \mathrm{m} / \mathrm{z} 273\left(\mathrm{M}^{+}, 22 \%\right), 205(74)$, 163 (100), 148 (9), 69 (14) and 43 (13).

1-Acetyl-2-(1,1-dimethylallyl)-5-bromo-2,3-dihydro-1 \mathbf{H}-indol-3-one 12a. A viscous oil (Found: $\mathrm{M}^{+}, 321.0356 . \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrNO}_{2}$ requires $M, 321.0366)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1725$ and 1680 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.03(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s}), 2.37(3 \mathrm{H}, \mathrm{s}), 4.34(1 \mathrm{H}, \mathrm{br}$ s), $5.00(1 \mathrm{H}, \mathrm{d}, J 10.6), 5.01(1 \mathrm{H}, \mathrm{d}, J 17.5), 5.79(1 \mathrm{H}, \mathrm{dd}, J 17.5$ and 10.6), $7.68-7.77(2 \mathrm{H}, \mathrm{m})$ and $7.87(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; m / z 273$ $(\mathrm{M}+2,12 \%), 271\left(\mathrm{M}^{+}, 12\right), 255(87), 253(88), 213(96), 211$ (100), 69 (54), 43 (27) and 41 (22).

1-Benzoyl-2-(1,1-dimethylallyl)-2,3-dihydro-1 H -indol-3-one 13a. A viscous oil (Found: $\mathrm{M}^{+}, 305.1419 . \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $M, 305.1416) ; \nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1717$ and $1663 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.13$ $(3 \mathrm{H}, \mathrm{s}), 1.23(3 \mathrm{H}, \mathrm{s}), 4.86(1 \mathrm{H}, \mathrm{s}), 4.94(1 \mathrm{H}, \mathrm{dd}, J 10.6$ and $1.0), 5.02(1 \mathrm{H}, \mathrm{dd}, J 17.2$ and 1.0$), 5.82(1 \mathrm{H}, \mathrm{dd}, J 17.2$ and
$10.6), 7.09(1 \mathrm{H}, \mathrm{t}, J 7.9), 7.31(1 \mathrm{H}, \mathrm{t}, J 7.9)$ and $7.48-7.69(7 \mathrm{H}$, $\mathrm{m}) ; m / z 305\left(\mathrm{M}^{+}, 9 \%\right), 237$ (68), 105 (100), 77 (24) and 69 (12).

2-(1,1-Dimethylallyl)-1-methoxycarbonyl-2,3-dihydro-1 \boldsymbol{H} -indol-3-one 14a. A viscous oil (Found: $\mathbf{M}^{+}, 259.1208$. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $M, 259.1208$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1717$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.09(3 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}), 4.29(1 \mathrm{H}, \mathrm{s})$, 4.93 ($1 \mathrm{H}, \mathrm{d}, J 10.6$), 4.94 ($1 \mathrm{H}, \mathrm{d}, J 17.2$), 5.82 ($1 \mathrm{H}, \mathrm{dd}, J 17.2$ and 10.6), $7.15(1 \mathrm{H}, \mathrm{t}, J 7.6), 7.58-7.65(2 \mathrm{H}, \mathrm{m})$ and $7.99(1 \mathrm{H}$, $\mathrm{t}, J 7.9) ; m / z 305\left(\mathrm{M}^{+}, 9 \%\right), 237$ (68), 105 (100), 77 (24) and 69 (12).

1-Acetyl-2-(3-methylbut-2-enyl)-2,3-dihydro-1 \boldsymbol{H}-indol-3-one 10b. Mp $154-158^{\circ} \mathrm{C}$ (lit. ${ }^{6 b} \mathrm{mp} \mathrm{155-160}{ }^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.45(3$ $\mathrm{H}, \mathrm{s}), 1.51(3 \mathrm{H}, \mathrm{s}), 2.33(3 \mathrm{H}, \mathrm{s}), 2.76(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.27(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $4.78(1 \mathrm{H}, \mathrm{t}, J 7.3), 7.14(1 \mathrm{H}, \mathrm{t}, J 7.6), 7.55-7.67(2 \mathrm{H}, \mathrm{m})$ and $8.44(1 \mathrm{H}, \mathrm{br}$).

1-Acetyl-5-methoxy-2-(3-methylbut-2-enyl)-2,3-dihydro-1 H-indol-3-one 11b. A viscous oil (Found: \mathbf{M}^{+}, 273.1367. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires $M, 273.1365$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1717$ and $1669 ; \delta_{H}\left(\mathrm{CDCl}_{3}\right) 1.53(3 \mathrm{H}, \mathrm{s}), 1.58(3 \mathrm{H}, \mathrm{s}), 2.36(3 \mathrm{H}, \mathrm{br} \mathrm{s})$, $2.82(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.84(3 \mathrm{H}, \mathrm{s}), 4.84(1 \mathrm{H}, \mathrm{t}, J 7.5), 5.14(1 \mathrm{H}, \mathrm{t}, J$ 7.5), $7.14(1 \mathrm{H}, \mathrm{t}, J 7.6), 7.55-7.67(2 \mathrm{H}, \mathrm{m})$ and $8.44(1 \mathrm{H}, \mathrm{br} \mathrm{s})$; $m / z 273\left(\mathrm{M}^{+}, 54 \%\right), 258(11), 205(44), 163$ (100) and 69 (12).

1-Acetyl-2-(3-methylbut-2-enyl)-5-bromo-2,3-dihydro-1 H -indol-3-one 12b. A viscous oil (Found: $\mathbf{M}^{+}, 321.0357$. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrNO}_{2}$ requires $M, 321.0365$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1723$ and 1680; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.54(3 \mathrm{H}, \mathrm{s}), 1.57(3 \mathrm{H}, \mathrm{s}), 2.38(3 \mathrm{H}, \mathrm{s})$, $2.83(2 \mathrm{H}, \mathrm{br}$ s) $, 4.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.83(1 \mathrm{H}, \mathrm{t}, J 7.6), 7.72(1 \mathrm{H}, \mathrm{dd}$, $J 8.9$ and 2.3), $7.38(1 \mathrm{H}, \mathrm{d}, J 2.0)$ and $8.43(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; m / z 323$ $(\mathrm{M}+2,32 \%), 321\left(\mathrm{M}^{+}, 33\right), 308$ (17), 306 (17), 255 (72), 253 (73), 213 (99), 211 (100), 69 (60), 43 (60), 43 (32) and 41 (27).

1-Benzoyl-2-(3-methylbut-2-enyl)-2,3-dihydro-1 \boldsymbol{H}-índol-3-one 13b. A viscous oil (Found: M^{+}, 305.1419. $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $M, 305.1416) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1718$ and $1662 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.54$ $(3 \mathrm{H}, \mathrm{s}), 1.53(3 \mathrm{H}, \mathrm{s}), 2.58-2.66(2 \mathrm{H}, \mathrm{m}), 4.64(1 \mathrm{H}, \mathrm{dd}, J 6.3$ and 3.0), $4.80(1 \mathrm{H}, \mathrm{t}, J 6.9), 7.18(1 \mathrm{H}, \mathrm{t}, J 7.9), 7.45-7.60(7 \mathrm{H}$, $\mathrm{m})$ and $7.75(1 \mathrm{H}, \mathrm{d}, J 6.6) ; \mathrm{m} / \mathrm{z} 305\left(\mathrm{M}^{+}, 22 \%\right), 237(50), 105$ (100) and 77 (26).

1-Acetyl-2-(3,7-dimethylocta-1,6-dien-3-yl)-2,3-dihydro-1 H -indol-3-one 10c. A viscous oil (Found: $\mathbf{M}^{+}, 311.1890$. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2}$ requires $M, 311.1895$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720$ and $1675 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$; ratio of diastereoisomers, 1:3) 0.93 (3 $\mathrm{H} \times 1 / 4, \mathrm{~s}), 1.18(3 \mathrm{H} \times 3 / 4, \mathrm{~s}), 1.55(3 \mathrm{H} \times 3 / 4, \mathrm{~s}), 1.60(3$ $\mathrm{H} \times 1 / 4, \mathrm{~s}), 1.64(3 \mathrm{H} \times 3 / 4, \mathrm{~s}), 1.67(3 \mathrm{H} \times 1 / 4, \mathrm{~s}), 2.38(3$ $\mathrm{H} \times 1 / 4, \mathrm{~s}), 2.41(3 \mathrm{H} \times 3 / 4, \mathrm{~s}), 4.47(1 \mathrm{H}, \mathrm{brs}), 4.90-5.09(3 \mathrm{H}$, $\mathrm{m}), 5.60(1 \mathrm{H} \times 3 / 4$, dd, $J 15.5$ and 10.9$)$, $5.80(1 \mathrm{H} \times 1 / 4, \mathrm{dd}, J$ 15.5 and 10.9), $7.20(1 \mathrm{H}, \mathrm{t}, J 7.6), 7.58-7.66(2 \mathrm{H}, \mathrm{m})$ and $7.84(1$ $\mathrm{H}, \mathrm{brs}) ; m / z 311\left(\mathrm{M}^{+}, 25 \%\right), 175$ (90), 133 (100), 93 (14), 81 (29), 69 (52) and 41 (23).
1-Acetyl-2-allyl-2,3-dihydro- \mathbf{H}-indol-3-one 10d. Mp 91$94^{\circ} \mathrm{C}\left(\right.$ lit., $\left.^{7 b} 92-94^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.42(3 \mathrm{H}, \mathrm{s}), 2.90(2 \mathrm{H}, \mathrm{br} \mathrm{s})$, $4.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.99(1 \mathrm{H}, \mathrm{d}, J 10.2), 5.11(1 \mathrm{H}, \mathrm{d}, J 17.5), 5.49$ (1 H, ddt, $J 17.5,10.6$ and 7.3), 7.22 ($1 \mathrm{H}, \mathrm{t}, J 7.9$), $7.66(1 \mathrm{H}, \mathrm{t}, J$ 7.3), $7.74(1 \mathrm{H}, \mathrm{d}, J 7.9)$ and $8.52(1 \mathrm{H}, \mathrm{br} \mathrm{s})$.

1-Acetyl-2-allyl-2-methyl-2,3-dihydro-1 H -indol-3-one 15 d . $\mathrm{Mp} 87-89^{\circ} \mathrm{C}$ (from diethyl ether-hexane) (Found: C, 73.2; H, 6.6; $\mathrm{N}, 6.0 . \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $\mathrm{C}, 73.3 ; \mathrm{H}, 6.6 ; \mathrm{N}, 6.1$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1716$ and $1666 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.65(3 \mathrm{H}, \mathrm{s}), 2.52$ $(3 \mathrm{H}, \mathrm{s}), 2.77(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.12(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.88(1 \mathrm{H}, \mathrm{d}, J 10.5)$, 5.03 ($1 \mathrm{H}, \mathrm{d}, J 17.2$), 5.75 (1 H , dddd, $J 17.5,10.6,9.9$ and 6.6), $7.21(1 \mathrm{H}, \mathrm{t}, J 7.6), 7.66(1 \mathrm{H}, \mathrm{t}, J 8.6$ and 7.2$), 7.80(1 \mathrm{H}, \mathrm{d}, J 7.6)$ and $8.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \mathrm{m} / \mathrm{z} 229\left(\mathrm{M}^{+}, 16 \%\right), 188(32), 146$ (100) and 43 (14).
1-Acetyl-2-allyl-2-phenyl-2,3-dihydro-1 H -indol-3-one 16d. Mp $115-118{ }^{\circ} \mathrm{C}$ (from diethyl ether-hexane) (Found: C, $78.0 ; \mathrm{H}$, 5.95 ; $\mathrm{N}, 4.75 . \mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $\mathrm{C}, 78.3 ; \mathrm{H}, 5.9 ; \mathrm{N}, 4.8$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1722$ and $1668 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.00(3 \mathrm{H}, \mathrm{br} \mathrm{s})$, $3.16(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.63(1 \mathrm{H}, \mathrm{br}$ s), $5.01(1 \mathrm{H}, \mathrm{d}, J 9.9), 5.18(1 \mathrm{H}, \mathrm{d}$, $J 16.8$), 5.41 (1 H, dddd, $J 16.8,9.9,7.9$ and 6.2), $7.2-7.42(6 \mathrm{H}$, $\mathrm{m}), 7.69-7.77(2 \mathrm{H}, \mathrm{m})$ and $8.79(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; m / z 291\left(\mathrm{M}^{+}, 22 \%\right)$, 250 (28) and 208 (100).

1-Acetyl-2-(1-methylallyl)-2,3-dihydro-1 H-indol-3-one
10e/10e'. A mixture of $\mathbf{1 0 e}$ and $10 e^{\prime}(1.7: 1), \mathrm{mp} 62-72^{\circ} \mathrm{C}$ (from diethyl ether) (Found: M^{+}, 229.1103. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires M, 229.1103); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1719$ and 1673; m/z $229\left(\mathrm{M}^{+}\right.$, 33%), 186 (14), 175 (16), 132 (100) and 43 (20). After separation of the mixture; 10e $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.35(3 \mathrm{H}, \mathrm{d}, J 7.0), 2.43(3 \mathrm{H}, \mathrm{s})$, $3.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.29(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.86(1 \mathrm{H}, \mathrm{d}, J 10.2), 5.02(1 \mathrm{H}$, d, $J 17.2$), 5.43 (1 H , ddd, $J 17.2,10.2$ and 6.9$), 7.19(1 \mathrm{H}, \mathrm{d}, J$ $7.6), 7.64(1 \mathrm{H}, \mathrm{dt}, J 7.2$ and 1.3$), 7.69(1 \mathrm{H}, \mathrm{d}, J 7.9)$ and $8.40(1$ $\mathrm{H}, \mathrm{brs}) ; \mathbf{1 0 e} \mathrm{e}^{\prime} \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.87(3 \mathrm{H}, \mathrm{d}, J 6.9), 2.42(3 \mathrm{H}, \mathrm{s}), 3.04(1$ $\mathrm{H}, \mathrm{brs}), 4.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.17(1 \mathrm{H}, \mathrm{d}, J 9.6), 5.18(1 \mathrm{H}, \mathrm{d}, J 17.2)$, $6.14(1 \mathrm{H}, \mathrm{ddd}, J 17.2,9.6$ and 7.9$), 7.22(1 \mathrm{H}, \mathrm{t}, J 7.9), 7.66(1 \mathrm{H}$, ddd, $J 8.6,7.5$ and 1.3), $7.72(1 \mathbf{H}, \mathrm{~d}, J 7.5)$ and $8.40(1 \mathrm{H}, \mathrm{br} \mathrm{s})$.
1-Acetyl-2-(1-phenylallyl)-2,3-dihydro-1 H-indol-3-one 10f. A mixture of diastereoisomers (1.2:1), as a viscous oil (Found: $\mathrm{M}^{+}, 291.1259 . \mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $M, 291.1259$); $v_{\max }(\mathrm{CH}-$ $\left.\mathrm{Cl}_{3}\right) / \mathrm{cm}^{-1} 1718$ and $1670 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$; the ratio of diastereoisomers, 1.2:1) $2.26(3 \mathrm{H} \times 0.45, \mathrm{~s}), 2.43(3 \mathrm{H} \times 0.55, \mathrm{~s}), 4.17$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$), $4.62(1 \mathrm{H} \times 0.45$, br s), $4.71(1 \mathrm{H} \times 0.55$, br s), $5.06(1 \mathrm{H} \times 0.55, \mathrm{~d}, J 9.9), 5.12(1 \mathrm{H} \times 0.55, \mathrm{~d}, J 16.8), 5.28(1$ $\mathrm{H} \times 0.45, \mathrm{~d}, J 9.9$), $5.29(1 \mathrm{H} \times 0.45, \mathrm{~d} J 17.2), 5.98$ (1 $\mathrm{H} \times 0.55$, ddd, $J 16.8,9.9$ and 9.6), $6.53(1 \mathrm{H} \times 0.45$, ddd, J 17.2, 9.9 and 9.6$), 6.94-7.67(8 \mathrm{H}, \mathrm{m})$ and $7.15(1 \mathrm{H} \times 0.55$, br s); $m / z 291\left(\mathrm{M}^{+}, 25 \%\right), 132$ (25) and 117 (100).

1-Acetyl-2-(1-methylallyl)-2-methyl-2,3-dihydro-1 \mathbf{H}-indol-3one 15e. A mixture of diastereoisomers (2.2:1), as a viscous oil (Found: $\mathrm{M}^{+}, 243.1268 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $M, 243.1259$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1711$ and $1668 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$; the ratio of diastereoisomers, 2.2:1) $0.74(3 \mathrm{H} \times 0.31, \mathrm{~d}, J 6.9), 1.22$ (3 $\mathrm{H} \times 0.69, \mathrm{~d}, J 6.9), 1.65(3 \mathrm{H} \times 0.31, \mathrm{~s}), 1.70(3 \mathrm{H} \times 0.69, \mathrm{~s})$, $2.53(3 \mathrm{H} \times 0.69, \mathrm{~s}), 2.56(3 \mathrm{H} \times 0.31, \mathrm{~s}), 3.41(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.78$ $(1 \mathrm{H} \times 0.69$, dd, $J 9.9$ and 1.9$), 4.96(1 \mathrm{H} \times 0.31, \mathrm{dd}, J 16.8$ and $1.9), 5.12(1 \mathrm{H} \times 0.31$, dd, $J 9.9$ and 1.8$)$, $5.16(1 \mathrm{H} \times 0.31$, dd, $J 16.8$ and 1.8), $5.32(1 \mathrm{H} \times 0.69$, ddd, $J 16.8,9.9$ and $9.2), 6.12(1 \mathrm{H} \times 0.31$, ddd, $J 16.8,9.9$ and 9.2), $7.15-7.28$ (1 $\mathrm{H}, \mathrm{m})$ and $7.6-7.8(4 \mathrm{H}, \mathrm{m}) ; m / z 243\left(\mathrm{M}^{+}, 15 \%\right), 188(27)$ and 146 (100).
1-Acetyl-2-(2-methylallyl)-2,3-dihydro-1 H -indol-3-one 10g. A viscous oil (Found: $\mathrm{M}^{+}, 229.1106 . \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires M, 229.1102); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1718$ and 1664; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.62$ (3 $\mathrm{H}, \mathrm{s}), 2.42(3 \mathrm{H}, \mathrm{s}), 2.82(2 \mathrm{H}, \mathrm{d}, J 4.6), 4.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.73(1 \mathrm{H}$, s), $4.78(1 \mathrm{H}, \mathrm{s}), 7.21(1 \mathrm{H}, \mathrm{t}, J 7.6), 7.63(1 \mathrm{H}, \mathrm{t}, J 7.3), 7.74(1 \mathrm{H}$, d, $J 7.6$) and $8.45(1 \mathrm{H}, \mathrm{br} s) ; m / z 229\left(\mathrm{M}^{+}, 33 \%\right), 186(10), 144$ (11), 132 (100), 77 (18) and 43 (40)
(E)-1-Acetyl-2-(but-2-enyl)-2,3-dihydro-1 H -indol-3-one $\mathbf{1 0 h}$. A viscous oil (Found: M^{+}, 229.1099. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires M, 229.1103); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1717$ and $1667 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.49(3$ $\mathrm{H}, \mathrm{dd}, J 6.6$ and 1.7$), 2.48(3 \mathrm{H}, \mathrm{s}), 2.81(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.31(1 \mathrm{H}, \mathrm{br}$ s), $5.11(1 \mathrm{H}, \mathrm{dtq}, J 15.2,7.3$ and 1.7$), 5.53(1 \mathrm{H}, \mathrm{dt}, J 15.2$ and 6.6), 7.21 ($1 \mathrm{H}, \mathrm{t}, J 7.6$), $7.66(1 \mathrm{H}, \mathrm{dt}, J 7.3$ and 1.3), $7.73(1 \mathrm{H}, \mathrm{d}$, $J 7.6)$ and $8.52\left(1 \mathrm{H}\right.$, br s); $m / z 229\left(\mathrm{M}^{+}, 32 \%\right), 186(17), 175$ (12), 132 (100), 77 (13) and 43 (41).

1-Acetyl-2-(cyclohex-2-enyl)-2,3-dihydro-1 \boldsymbol{H}-indol-3-one 10i. A mixture of diastereoisomers (1:1), mp $135-136^{\circ} \mathrm{C}$ (from ethyl acetate-hexane) (Found: C, 74.8; H, 6.75; N, 5.3. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires C, $75.3 ; \mathrm{H}, 6.7 ; \mathrm{N}, 5.5 \%$) (Found: M^{+}, 255.1263. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $M, 255.1260$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 1729,1714,1670$ and $1654 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.41-2.11(6 \mathrm{H}$, $\mathrm{m})$, $2.41(3 \mathrm{H}, \mathrm{s}), 3.04(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.30(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $5.21(1$ $\mathrm{H} \times 1 / 2$, br d, $J 10.2$), $5.67(1 \mathrm{H} \times 1 / 2$, br dd, $J 10.2$ and 3.2), $5.78(1 \mathrm{H} \times 1 / 2$, br d, $J 10.2), 5.90(1 \mathrm{H} \times 1 / 2$, br dd, $J 10.2$ and 3.2), 7.24 ($1 \mathrm{H}, \mathrm{t}, J 7.6$), $7.65(1 \mathrm{H}, \mathrm{t}, J 7.3), 7.69(1 \mathrm{H}, \mathrm{d}, J 7.6)$ and $8.31(1 \mathrm{H}, \mathrm{br})$); $m / z 255\left(\mathrm{M}^{+}, 21 \%\right), 175(68), 133(100), 81$ (24) and 43 (11).

1-Acetyl-2-(1-methylcyclohex-2-enyl)-2,3-dihydro-1 \boldsymbol{H}-indol-3one $\mathbf{1 0 j}$. A mixture of diastereoisomers (1.6:1), as a viscous oil, $\mathrm{mp} \quad 133-137^{\circ} \mathrm{C}$ (from ethyl acetate-hexane) (Found: M^{+} 269.1412. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $M, 269.1416$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 1715$ and 1663; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.40-2.01(6 \mathrm{H}, \mathrm{m}), 2.39(3 \mathrm{H}$, s), $2.99(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.27(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.94(1 \mathrm{H} \times 0.62$, br s),
$5.47(1 \mathrm{H} \times 0.38, \mathrm{br} \mathrm{s}), 7.20(1 \mathrm{H}, \mathrm{t}, J 7.6), 7.60-7.69(2 \mathrm{H}, \mathrm{m})$ and $8.33\left(1 \mathrm{H}, \mathrm{br}\right.$ s); $m / z 269\left(\mathrm{M}^{+}, 8 \%\right), 175(68), 133(99), 133$ (96), 95 (100), 77 (25), 67 (21) and 43 (29).

Conversion of 10 e into $\left(\mathbf{3} \mathrm{R}^{*}, \mathbf{3 a} R^{*}, \mathbf{8 b} R^{*}\right)$-4-acetyl-3-methyl-2,3,3a,8b-tetrahydro-4 H -furo $\mathbf{3 , 2 - b}$] indol-2-one 18e

cis-1-Acetyl-3-hydroxy-2-(1-methylallyl)indoline 17e. To a solution of indol-3-one $\mathbf{1 0 e}(298 \mathrm{mg}, 1.3 \mathrm{mmol})$ in methanol (30 cm^{3}), was added sodium borohydride ($493 \mathrm{mg}, 13 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 min , and then concentrated under reduced pressure. The residue was extracted with ethyl acetate, and the extract was washed with water, dried over magnesium sulfate and the solvent evaporated. The residue was chromatographed on silica gel with diethyl ether-hexane (3:1) as an eluent to give the alcohol $17 \mathrm{e}(243 \mathrm{mg}, 81 \%)$ as a viscous oil (Found: $\mathrm{M}^{+}, 231.1258 . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $M, 231.1259$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3430$ and 1639; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.11(3 \mathrm{H}, \mathrm{d}, J$ 6.9), $2.39(3 \mathrm{H}, \mathrm{s}), 2.28(1 \mathrm{H}, \mathrm{s}), 2.38(1 \mathrm{H}, \mathrm{d}, J 8.9), 2.78(1 \mathrm{H}, \mathrm{br}$ s), $4.91(1 \mathrm{H}, \mathrm{d}, J 10.2), 5.03(1 \mathrm{H}, \mathrm{d}, J 17.5)$, $5.56(1 \mathrm{H}, \mathrm{t}, J 7.9)$, $5.83(1 \mathrm{H}, \mathrm{ddd}, J 17.5,10.2$ and 6.3), $7.04(1 \mathrm{H}, \mathrm{t}, J 7.6), 7.18$ (1 $\mathrm{H}, \mathrm{d}, J 7.6), 7.23(1 \mathrm{H}, \mathrm{t}, J 8.9)$ and $7.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; m / z 231\left(\mathrm{M}^{+}\right.$, 18%), 213 (38), 176 (51), 171 (48), 156 (52), 134 (100) and 43 (14).

Furo[3,2-b]indol-2-one 18e. A solution of the alcohol 17e (50 $\mathrm{mg}, 0.22 \mathrm{mmol}$) in methylene dichloride ($5.5 \mathrm{~cm}^{3}$) and methanol ($0.5 \mathrm{~cm}^{3}$) was cooled to $-78^{\circ} \mathrm{C}$, and ozone was bubbled into the mixture until the colour of the solution turned blue. The excess ozone was purged with argon, and dimethyl sulfide ($0.047 \mathrm{~cm}^{3}, 0.65 \mathrm{mmol}$) was added. The mixture was allowed to warm to room temperature overnight, and then concentrated under reduced pressure. An ethyl acetate-hexane (3:2) solution of the residue was passed through a silica gel column to give a product (11.3 mg). A solution of the product in methylene dichloride $\left(0.2 \mathrm{~cm}^{3}\right)$ was added to a solution of pyridinium chlorochromate (PCC, $98 \%, 53.6 \mathrm{mg}, 0.24 \mathrm{mmol}$) in methylene dichloride ($1.5 \mathrm{~cm}^{3}$) at room temperature. After stirring for 3 h , diethyl ether ($3 \mathrm{~cm}^{3}$), magnesium sulfate $(0.4 \mathrm{~g})$ and molecular sieves $(4 \AA)$ were added to the mixture, and the mixture was stirred for 10 min . The solids were removed by filtration, and the filtrate was concentrated under reduced pressure to give a residue, which was purified by silica gel column chromatography with ethyl acetate-hexane (3:2) to give lactone 18e $(6.3 \mathrm{mg}$, 12%), mp $145-148^{\circ} \mathrm{C}$ (diethyl ether-hexane) (Found: M^{+}, 231.0891. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires $M, 231.0895$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 1776$ and $1664 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$, at $\left.24^{\circ} \mathrm{C}\right) 1.61(3 \mathrm{H}, \mathrm{d}, J$ 7.6), $2.33(3 \mathrm{H} \times 1 / 3, \mathrm{~s}), 2.49(3 \mathrm{H} \times 2 / 3, \mathrm{~s}), 2.85(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $4.68(1 \mathrm{H} \times 1 / 3 \mathrm{brs}), 4.81(1 \mathrm{H} \times 2 / 3$, br s), $5.97(1 \mathrm{H} \times 2 / 3$, brs), $6.12(1 \mathrm{H} \times 1 / 3$, br s), $7.05-7.27(4 / 3 \mathrm{H}, \mathrm{m}), 7.30-7.71(5 / 3$ $\mathrm{H}, \mathrm{m})$ and $8.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{H}}\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}$, at $\left.80^{\circ} \mathrm{C}\right) 1.46(3 \mathrm{H}$, d, $J 7.6), 2.49(3 \mathrm{H}, \mathrm{s}), 2.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.00(1 \mathrm{H}, \mathrm{m}), 4.88(1 \mathrm{H}$, dd, $J 7.9$ and 3.0), $6.17(1 \mathrm{H}, J 7.9), 7.13(1 \mathrm{H}, \mathrm{t}, J 7.3), 7.39(1 \mathrm{H}$, $\mathrm{t}, J 7.3), 7.49(1 \mathrm{H}, \mathrm{d}, J 6.9)$ and $7.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; m / z 231\left(\mathrm{M}^{+}\right.$, 100%), 189 (95), 144 (69), 133 (52), 130 (78) and 43 (37).

Conversion of $10 \mathrm{e}^{\prime}$ into ($\mathbf{3 S} \mathrm{S}^{*}, \mathbf{3 a} R^{*}, \mathbf{8 b} R^{*}$)-4-acetyl-3-methyl-2,3,3a,8b-tetrahydro-4 H -furo $[3,2-b]$ indol-2-one 18e'

cis-1-Acetyl-3-hydroxy-2-(1-methylallyl)indoline 17e'. Using a procedure similar to that described above for the preparation of $\mathbf{1 7 e}, 10 \mathbf{e}^{\prime}(63 \mathrm{mg}, 0.28 \mathrm{mmol})$ was treated with sodium borohydride ($104 \mathrm{mg}, 2.8 \mathrm{mmol}$) in methanol ($7 \mathrm{~cm}^{3}$) to afford $17 \mathrm{e}^{\prime}\left(50 \mathrm{mg}, 77 \%\right.$), as a viscous oil (Found: $\mathrm{M}^{+}, 231.1251$. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $M, 231.1258$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3410$ and $1643 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.10(3 \mathrm{H}, \mathrm{d}, J 6.9), 2.35(3 \mathrm{H}, \mathrm{s}), 2.42(1 \mathrm{H}$, d, $J 8.3$), $2.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.90(1 \mathrm{H}, \mathrm{d}, J 9.6), 5.00(1 \mathrm{H}, \mathrm{d}, J$ 17.5), $5.29-5.74(2 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{t}, J 7.3), 7.25(1 \mathrm{H}, \mathrm{d}, J 7.6)$, $7.29(1 \mathrm{H}, \mathrm{t}, J 7.6)$ and $7.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; m / z 231\left(\mathrm{M}^{+}, 21 \%\right), 213$ (26), 176 (58), 171 (30), 156 (34), 134 (100) and 43 (13).

Furo [3,2-b]indol-2-one 18e'. Using a procedure similar to that described above for the preparation of 18e, 17e' (35 $\mathrm{mg}, 0.15 \mathrm{mmol}$) was converted into 18e' ($7.3 \mathrm{mg}, 21 \%$), mp $122-126^{\circ} \mathrm{C}$ (diethyl ether-hexane) (Found: M^{+}, 231.083. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires $M, 231.0895$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1774$ and 1658; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$, at $\left.24^{\circ} \mathrm{C}\right) 1.15(3 \mathrm{H}, \mathrm{d}, J 7.6), 2.23(3$ $\mathrm{H} \times 1 / 2 \mathrm{br} \mathrm{s}), 2.40(3 \mathrm{H} \times 1 / 2, \mathrm{brs}), 3.05(1 \mathrm{H}, \mathrm{br}$ s), $5.12(1$ $\mathrm{H} \times 1 / 2 \mathrm{brs}), 5.40(1 \mathrm{H} \times 1 / 2, \mathrm{brs}), 6.05(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.09(1 \mathrm{H}$, $\mathrm{t}, J 7.6), 7.33(1 \mathrm{H}, \mathrm{d}, J 7.3), 7.41(1 \mathrm{H}, \mathrm{brs})$ and $8.20(1 \mathrm{H}, \mathrm{br} \mathrm{s})$; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO, at $\left.80^{\circ} \mathrm{C}\right) 0.89(3 \mathrm{H}, \mathrm{d}, J 7.9), 2.19(3 \mathrm{H}, \mathrm{s}), 3.16$ $(1 \mathrm{H}, \mathrm{dq}, J 9.2$ and 7.9$), 5.27(1 \mathrm{H}, \mathrm{dd}, J 9.2$ and 8.9$), 6.16(1 \mathrm{H}, J$ $8.9), 7.06(1 \mathrm{H}, \mathrm{t}, J 7.3), 7.30(1 \mathrm{H}, \mathrm{t}, J 7.9), 7.38(1 \mathrm{H}, \mathrm{d}, J 7.6)$ and $7.82(1 \mathrm{H}, \mathrm{d}, J 7.9) ; m / z 231\left(\mathrm{M}^{+}, 36 \%\right), 189(44), 144$ (58), 133 (32), 130 (100) and 43 (50).

Acknowledgements

This work was supported by Special Coordination Funds of the Science and Technology Agency of the Japanese Government. We are grateful to Miss T. Koseki for her technical assistance, and to Mr N. Eguchi, Miss S. Yoshioka and Miss T. Koseki for measurements of microanalytical, NMR (NOE experiment) and mass spectral data.

References

1 J. Y. Merour, J. Y. Coadou and F. Tatibouet, Synthesis, 1982, 1053; A. Buzas, C. Herisson and G. Lavielle, Synthesis, 1977, 129; K. N. Kilminster and M. Sainsbury, J. Chem. Soc., Perkin Trans. 1, 1972, 2264; F. Nivoliers, A. Decormeille, A. Godard and G. Quequiner, Tetrahedron Lett., 1980, 21, 4485; G. Argiropoulos, L. W. Deady and M. Dorkos, Aust. J. Chem., 1991, 44, 481; T. Kawasaki, Y. Nonaka, M. Uemura and M. Sakamoto, Synthesis, 1991, 701; T. Kawasaki, Y. Nonaka, M. Akahane, N. Maeda and M. Sakamoto, J. Chem. Soc., Perkin Trans. 1, 1993, 1777.

2 P. S. Steyn, Tetrahedron Lett., 1971, 3331.
3 A. J. Birch and J. J. Wright, J. Chem. Soc., Chem. Commun., 1969, 644; A. J. Birch and R. A. Russell, Tetrahedron, 1972, 28, 2999.
4 M. Barbetta, G. Casnati, A. Pochini and A. Silva, Tetrahedron Lett., 1969, 4457.
5 T. A. Smitka, R. Bonjouklian, L. Doolin, N. D. Jones, J. B. Deeter, W. Y. Yoshida, M. R. Prinsep, R. E. Moore and G. M. L. Patterson, J. Org. Chem., 1992, 57, 857; C. Christopherson, The Alkaloids, 1985, 24, 25; M. A. O'Leary and J. R. Hanson, Tetrahedron Lett., 1982, 23, 1855.
6 J. F. Sanz-Cervera, T. Glinka and R. M. Williams, J. Am. Chem. Soc., 1993, 115, 347.
7 (a) J.-Y. Mérour, L. Chichereau and J.-P. Finet, Tetrahedron Lett., 1992, 33, 3867; (b) T. Kawasaki, Y. Nonaka, M. Kobayashi and M. Sakamoto, J. Chem: Soc., Perkin Trans. 1, 1991, 2445 and references cited therein; (c) S. C. Conway and G. W. Gribble, Heterocycles, 1990, 30, 627; (d) A. Buzas and J.-Y. Mėrour, Synthesis, 1989, 458; (e) H. Plieninger, H. Sirowej and D. Rau, Chem. Ber., 1971, 104, 1863; (f) E. Houghton and J. E. Saxton, J. Chem. Soc. (C), 1969, 595.

8 T. Kawasaki, K. Masuda, Y. Baba, K. Takada and M. Sakamoto, Chem. Pharm. Bull., 1994, 42, 1974.
9 C.-S. Chien, A. Hasegawa, T. Kawasaki and M. Sakamoto, Chem. Pharm. Bull., 1986, 34, 1493.
10 P. Wipf, in Comprehensive Organic Synthesis, ed. B. M. Trost, Pergamon, Oxford, 1991, p. 827; F. E. Zieglar, Chem. Rev., 1988, 88, 1423; S. J. Rhoads and N. R. Raulins, Org. React. (N. Y.), 1975, 22, 1.
11 C.-S. Chien, T. Suzuki, T. Kawasaki and M. Sakamoto, Chem. Pharm. Bull., 1984, 32, 3945.
12 T. Kawasaki, H. Ohtsuka, C.-S. Chien, M. Omata and M. Sakamoto, Chem. Pharm. Bull., 1987, 35, 1339.

Paper 5/05265C
Received 7th August 1995
Accepted 16th October 1995

[^0]: \dagger The reaction was slow unless magnesium sulfate was added.

